Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Geophysical Research Letters, 18(50), 2023

DOI: 10.1029/2023gl105492

Links

Tools

Export citation

Search in Google Scholar

The Dependence of Climate Sensitivity on the Meridional Distribution of Radiative Forcing

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractThis study investigates how climate sensitivity depends upon the spatial pattern of radiative forcing. Sensitivity experiments using a coupled ocean‐atmosphere model were conducted by adding anomalous incoming solar radiation over the entire globe, Northern Hemisphere mid‐latitudes, Southern Ocean, and tropics. The varied forcing patterns led to highly divergent climate sensitivities. Specifically, the climate is nearly twice as sensitive to Southern Ocean forcing as tropical forcing. Strong coupling between the surface and free troposphere in the tropics increases the inversion strength, leading to smaller cloud feedback in the tropical forcing experiments. In contrast, the extratropics exhibit weaker coupling, a decrease or near‐zero change in the inversion strength, and strong positive cloud feedback. These results contrast with the conventional SST‐pattern effect in which tropical surface temperature changes regulate climate sensitivity. They also have important implications for other potentially asymmetric forcings, such as those from geoengineering, volcanic eruptions, and paleoclimatic changes.