Dissemin is shutting down on January 1st, 2025

Published in

Wiley, International Journal of Energy Research, (2023), p. 1-11, 2023

DOI: 10.1155/2023/1495217

Links

Tools

Export citation

Search in Google Scholar

Multimode Consecutively Connected Piston-Type Cylindrical Triboelectric Nanogenerators for Rotational Energy Harvesting and Sensing Application

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A 3D-printed multicoupled piston-type cylindrical triboelectric nanogenerator (MPC-TENG) that utilizes contact-separation and lateral-sliding operational modes to harvest rotational motion and convert it into electricity was proposed. The electrical performances of the fabricated four similar piston-type cylindrical TENGs (PC-TENGs) were systematically investigated. TENGs in general produce electricity in an alternating-signal form which may not be used to directly power electronic devices. Therefore, all the individual PC-TENGs were connected with a simple external filter circuit to obtain direct current (DC) electrical output, and further, they were parallelly connected to increase the overall electrical output from the MPC-TENG. The MPC-TENG consists of four PC-TENGs and produces a DC electrical output of ~40 V and ~12.5 μA at 380 rpm. Furthermore, the MPC-TENG was attached to wind cups to harvest wind energy and a Pilton wheel to harvest hydrokinetic energy, respectively. The harvested energy was stored in energy storage devices to power various small-scale electronic gadgets. Furthermore, a real-time self-sustaining alarm combined with the MPC-TENG was demonstrated to detect unauthorized human/wild animal entry into a protected region. This work also shows that the DC electrical signals from the proposed MPC-TENG can be further increased by combining more PC-TENG devices.