Published in

MDPI, Sensors, 11(23), p. 5060, 2023

DOI: 10.3390/s23115060

Links

Tools

Export citation

Search in Google Scholar

A Distributed IoT Air Quality Measurement System for High-Risk Workplace Safety Enhancement

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The safety of an operator working in a hazardous environment is a recurring topic in the technical literature of recent years, especially for high-risk environments such as oil and gas plants, refineries, gas depots, or chemical industries. One of the highest risk factors is constituted by the presence of gaseous substances such as toxic compounds such as carbon monoxide and nitric oxides, particulate matter or indoors, in closed spaces, low oxygen concentration atmospheres, and high concentrations of CO2 that can represent a risk for human health. In this context, there exist many monitoring systems for lots of specific applications where gas detection is required. In this paper, the authors present a distributed sensing system based on commercial sensors aimed at monitoring the presence of toxic compounds generated by a melting furnace with the aim of reliably detecting the insurgence of dangerous conditions for workers. The system is composed of two different sensor nodes and a gas analyzer, and it exploits commercial low-cost commercially available sensors.