Published in

Life Science Alliance, Life Science Alliance, 12(6), p. e202302003, 2023

DOI: 10.26508/lsa.202302003

Links

Tools

Export citation

Search in Google Scholar

Cell-free chromatin immunoprecipitation to detect molecular pathways in heart transplantation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Existing monitoring approaches in heart transplantation lack the sensitivity to provide deep molecular assessments to guide management, or require endomyocardial biopsy, an invasive and blind procedure that lacks the precision to reliably obtain biopsy samples from diseased sites. This study examined plasma cell-free DNA chromatin immunoprecipitation sequencing (cfChIP-seq) as a noninvasive proxy to define molecular gene sets and sources of tissue injury in heart transplant patients. In healthy controls and in heart transplant patients, cfChIP-seq reliably detected housekeeping genes. cfChIP-seq identified differential gene signals of relevant immune and nonimmune molecular pathways that were predominantly down-regulated in immunosuppressed heart transplant patients compared with healthy controls. cfChIP-seq also identified cell-free DNA tissue sources. Compared with healthy controls, heart transplant patients demonstrated greater cell-free DNA from tissue types associated with heart transplant complications, including the heart, hematopoietic cells, lungs, liver, and vascular endothelium. cfChIP-seq may therefore be a reliable approach to profile dynamic assessments of molecular pathways and sources of tissue injury in heart transplant patients.