Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Energy Materials, 5(14), 2023

DOI: 10.1002/aenm.202303829

Links

Tools

Export citation

Search in Google Scholar

Boundary‐Free Metal–Organic Framework Glasses Enable Highly Stable All‐Solid‐State Lithium–Oxygen Battery

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractRechargeable lithium–oxygen batteries (LOBs) are considered to be one of the most promising energy storage systems. However, the use of reactive lithium (Li) metal and the formation of Li dendrites during battery operation would lead to serious safety concerns, especially when flammable liquid electrolytes are utilized. Herein, superior metal–organic framework (MOF) glass‐based solid‐state electrolytes (SSEs) is developed for stable all‐solid‐state LOBs (SSLOBs). These non‐flammable and boundary‐free MOF glass SSEs are capable of suppressing the dendrite growth and exhibiting long‐term Li stripping/plating stability, contributing to superior Li+ conductivity (5 × 10−4 S cm−1 at 20 °C), high Li+ transference number (0.86), and good electrochemical stability. It is discovered that discharge product deposition behavior in the solid‐solid interface can be well regulated by the ion/electron mixed conducted cathode fabricated with MOF glass SSEs and electronic conductive polymers. As a result, the SSLOBs can be stably recharged for 400 cycles with a low polarization gap and deliver a high capacity of 13552 mAh g−1. The development of this proposed MOF glass displays great application potential in energy storage systems with good safety and high energy density.