Dissemin is shutting down on January 1st, 2025

Published in

Association for Computing Machinery (ACM), ACM Computing Surveys, 3(54), p. 1-35, 2021

DOI: 10.1145/3447241

Links

Tools

Export citation

Search in Google Scholar

Syntactic Pattern Recognition in Computer Vision

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Using techniques derived from the syntactic methods for visual pattern recognition is not new and was much explored in the area called syntactical or structural pattern recognition. Syntactic methods have been useful because they are intuitively simple to understand and have transparent, interpretable, and elegant representations. Their capacity to represent patterns in a semantic, hierarchical, compositional, spatial, and temporal way have made them very popular in the research community. In this article, we try to give an overview of how syntactic methods have been employed for computer vision tasks. We conduct a systematic literature review to survey the most relevant studies that use syntactic methods for pattern recognition tasks in images and videos. Our search returned 597 papers, of which 71 papers were selected for analysis. The results indicated that in most of the studies surveyed, the syntactic methods were used as a high-level structure that makes the hierarchical or semantic relationship among objects or actions to perform the most diverse tasks.