Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(507), p. 3540-3563, 2021

DOI: 10.1093/mnras/stab2226

Links

Tools

Export citation

Search in Google Scholar

The ALPINE-ALMA [C ii] Survey: kinematic diversity and rotation in massive star-forming galaxies at z ~ 4.4–5.9

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT While the kinematics of galaxies up to z ∼ 3 have been characterized in detail, only a handful of galaxies at high redshift (z > 4) have been examined in such a way. The Atacama Large Millimeter/submillimeter Array (ALMA) Large Program to INvestigate [C ii] at Early times (ALPINE) survey observed a statistically significant sample of 118 star-forming main-sequence galaxies at z = 4.4–5.9 in [C ii]158 $μ$m emission, increasing the number of such observations by nearly 10×. A preliminary qualitative classification of these sources revealed a diversity of kinematic types (i.e. rotators, mergers, and dispersion-dominated systems). In this work, we supplement the initial classification by applying quantitative analyses to the ALPINE data: a tilted ring model (TRM) fitting code (3Dbarolo), a morphological classification (Gini-M20), and a set of disc identification criteria. Of the 75 [C ii]-detected ALPINE galaxies, 29 are detected at sufficient significance and spatial resolution to allow for TRM fitting and the derivation of morphological and kinematic parameters. These 29 sources constitute a high-mass subset of the ALPINE sample ($M_*\gt 10^{9.5}\, \mathrm{M}_{⊙ }$). We robustly classify 14 of these sources (six rotators, five mergers, and three dispersion-dominated systems); the remaining sources showing complex behaviour. By exploring the G-M20 of z > 4 rest-frame far-infrared and [C ii] data for the first time, we find that our 1 arcsec ∼ 6 kpc resolution data alone are insufficient to separate galaxy types. We compare the rotation curves and dynamical mass profiles of the six ALPINE rotators to the two previously detected z ∼ 4–6 unlensed main-sequence rotators, finding high rotational velocities (∼50–250 km s−1) and a diversity of rotation curve shapes.