Dissemin is shutting down on January 1st, 2025

Published in

OSA Continuum, 11(4), p. 2805, 2021

DOI: 10.1364/osac.442310

Links

Tools

Export citation

Search in Google Scholar

Adaptive coherence volume in full-field optical coherence tomography

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Optical sectioning is instrumental for the observation of extended biological samples. It allows the observation of only a slice of the sample while rejecting contributions from out of focus depths. The acquisition of the whole volume then requires an axial displacement of the sample or the focus. To satisfy Nyquist sampling, this axial displacement has to be equal to half the axial resolution. As lateral and axial resolutions are coupled by the numerical aperture of the microscope objective in most imaging techniques, high-resolution imaging of a volume is a time-consuming task, especially caused by the slow axial scanning. Here, we propose to adapt the axial resolution, or axial extent of the coherence volume, by filtering the spectrum of the illumination of an interferometric imaging technique. We applied our approach on full-field optical coherence tomography and show a tuning of this axial extent from 1.5 to 15 μm, allowing to adapt both the acquisition time and the amount of data. We finally demonstrate that the method is especially suited to image large biological samples such as millimetric engineered tissues.