Published in

MDPI, Horticulturae, 1(8), p. 64, 2022

DOI: 10.3390/horticulturae8010064

Links

Tools

Export citation

Search in Google Scholar

Chemometric Comparison and Classification of 22 Apple Genotypes Based on Texture Analysis and Physico-Chemical Quality Attributes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The large number of cultivars belonging to the cultivated apple (Malus × domestica Borkh.) reflects an extremely wide range of variability, including for fruit quality traits. To evaluate some characteristics of fruit quality, 22 apple genotypes were selected from a collection of germplasms containing more than 600 accessions, based on different considerations, including the use of fruits (dessert, cooking, processing, juice, cider, multipurpose). The mean water content of the studied apple genotypes was 85.05%, with a coefficient of variation (CV) of 2.74%; the mean ash content was 2.32% with a CV of 22.1%, and the mean total soluble solids was 16.22% with a CV of 17.78%, indicating a relatively small difference between genotypes for these indices. On the contrary, relatively large differences were registered between genotypes for fruit weight, volume, and titratable acidity with means of 119.52 g, 155 mL, and 0.55% malic acid, and CVs of 35.17%, 34.58%, and 54.3%, respectively. The results showed that peel hardness varied between 3.80 and 13.69 N, the toughness between 0.2 and 1.07 mm, the flesh hardness between 0.97 and 4.76 N, and the hardness work between 6.88 and 27.84 mJ. The current study can emphasize the possibility of choosing the appropriate apple cultivars to cross in the breeding process and how future strategies can help apple breeders select breeding parents, which are essential key steps when breeding new apple cultivars. In addition, multivariate analysis has proven to be a useful tool in assessing the relationships between Malus genetic resources.