Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, in silico Plants, 1(4), 2022

DOI: 10.1093/insilicoplants/diac003

Links

Tools

Export citation

Search in Google Scholar

BioCro II: a software package for modular crop growth simulations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The central motivation for mechanistic crop growth simulation has remained the same for decades: to reliably predict changes in crop yields and water usage in response to previously unexperienced increases in air temperature and CO2 concentration across different environments, species and genotypes. Over the years, individual process-based model components have become more complex and specialized, increasing their fidelity but posing a challenge for integrating them into powerful multiscale models. Combining models is further complicated by the common strategy of hard-coding intertwined parameter values, equations, solution algorithms and user interfaces, rather than treating these each as separate components. It is clear that a more flexible approach is now required. Here we describe a modular crop growth simulator, BioCro II. At its core, BioCro II is a cross-platform representation of models as sets of equations. This facilitates modularity in model building and allows it to harness modern techniques for numerical integration and data visualization. Several crop models have been implemented using the BioCro II framework, but it is a general purpose tool and can be used to model a wide variety of processes.