Published in

Nature Research, Communications Earth & Environment, 1(3), 2022

DOI: 10.1038/s43247-022-00373-1

Links

Tools

Export citation

Search in Google Scholar

Ancient and recent collisions revealed by phosphate minerals in the Chelyabinsk meteorite

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe collision history of asteroids is an important archive of inner Solar System evolution. Evidence for these collisions is brought to Earth by meteorites. However, as meteorites often preserve numerous impact-reset mineral ages, interpretation of their collision histories is controversial. Here, we combine analysis of phosphate U-Pb ages and microtextures to interpret the collision history of Chelyabinsk—a highly shocked meteorite. We show that phosphate U-Pb ages correlate with phosphate microtextural state. Pristine phosphate domain U-Pb compositions are generally concordant, whereas fracture-damaged domains universally display discordance. Combining both populations best constrains upper (4473 ± 11 Ma) and lower intercept (−9 ± 55 Ma, i.e., within error of present) U-Pb ages. All phosphate U-Pb ages were completely reset during an ancient high energy collision, whilst fracture-damaged domains experienced further Pb-loss during mild and recent collisional re-heating. Targeting textural sub-populations of phosphate grains permits more robust reconstruction of asteroidal collision histories.