Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Chinese Physics B, 6(31), p. 067502, 2022

DOI: 10.1088/1674-1056/ac65f5

Links

Tools

Export citation

Search in Google Scholar

Non-volatile multi-state magnetic domain transformation in a Hall balance

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

High performance of the generation, stabilization and manipulation of magnetic skyrmions prompts the application of topological multilayers in spintronic devices. Skyrmions in synthetic antiferromagnets (SAF) have been considered as a promising alternative to overcome the limitations of ferromagnetic skyrmions, such as the skyrmion Hall effect and stray magnetic field. Here, by using the Lorentz transmission electron microscopy, the interconversion between the single domain, labyrinth domain and skyrmion state can be observed by the combined manipulation of electric current and magnetic field in a Hall balance (a SAF with the core structure of [Co/Pt]4/NiO/[Co/Pt]4 showing perpendicular magnetic anisotropy). Furthermore, high-density room temperature skyrmions can be stabilized at zero field while the external stimulus is removed and the skyrmion density is tunable. The generation and manipulation method of skyrmions in Hall balance in this study opens up a promising way to engineer SAF-skyrmion-based memory devices.