Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Photonics, 5(9), p. 341, 2022

DOI: 10.3390/photonics9050341

Links

Tools

Export citation

Search in Google Scholar

Effect of Near-Infrared Blood Photobiomodulation on Red Blood Cell Damage from the Extracorporeal Circuit during Hemodialysis In Vitro

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The contact of blood with the bioincompatible membranes of the dialyzer, which is part of the extracorporeal circuit during hemodialysis (HD), causes upregulation of various cellular and non-cellular processes, including massive generation and release of reactive oxygen species (ROS), (which is one of the primary causes of anemia in chronic renal failure). We hypothesize that near-infrared (NIR) radiation possesses antioxidant properties and is considered to protect the red blood cell (RBC) membrane by enhancing its resilience to negative pressures. Our experimental setup consisted of an HD machine equipped with a dialyzer with a polyamide membrane; whole bovine blood was examined in vitro in blood-treated circulation. Blood samples were taken at 0, 5, 15, and 30 min during the HD therapy. We also assessed osmotic fragility, hematocrit, hemolysis, and oxidative stress as a concentration of reactive thiobarbituric acid substances (TBARS). Our results have shown that RBC membrane peroxidation increased significantly after 30 min of circulation, whereas the TBARS level in NIR-treated blood remained relatively steady throughout the experiment. The osmotic fragility of NIR-irradiated samples during dialysis was decreased compared to control samples. Our studies confirm that in vitro, blood photobiomodulation using NIR light diminishes oxidative damage during HD and can be considered a simultaneous pretreatment strategy for HD.