Dissemin is shutting down on January 1st, 2025

Published in

Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 6(65), p. 334-342, 2022

DOI: 10.3342/kjorl-hns.2021.00871

Links

Tools

Export citation

Search in Google Scholar

Machine Learning-Based Predictor for Treatment Outcomes of Patients With Salivary Gland Cancer After Operation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Background and Objectives The purpose of this study was to analyze the survival data of salivary gland cancer (SGCs) patients to construct machine learning and deep learning models that can predict survival and use them to stratify SGC patients according to risk estimate.Subjects and Method We retrospectively analyzed the clinicopathologic data from 460 patients with SGCs from 2006 to 2018.Results In Cox proportional hazard (CPH) model, pM, stage, lymphovascular invasion, lymph node ratio, and age exhibited significant correlation with patient’s survival. In the CPH model, the c-index value for the training set was 0.85, and that for the test set was 0.81. In the Random Survival Forest model, the c-index value for the training set was 0.86, and that for the test set was 0.82. Stage and age exhibited high importance in both the Random Survival Forest and CPH models. In the deep learning-based model, the c-index value was 0.72 for the training set and 0.72 for the test set. Among the three models mentioned above, the Random Survival Forest model exhibited the highest performance in predicting the survival of SGC patients.Conclusion A survival prediction model using machine learning techniques showed acceptable performance in predicting the survival of SGC patients. Although large-scale clinical and multicenter studies should be conducted to establish more powerful predictive model, we expect that individualized treatment can be realized according to risk stratification made by the machine learning model.