Elsevier, Journal of Magnetic Resonance, 2(171), p. 293-304
DOI: 10.1016/j.jmr.2004.09.006
Full text: Download
Simulations of QCPMG NMR type experiments have been used to explore dynamic processes of half-integer quadrupolar nuclei in solids. By setting up a theoretical approach that is well suited for efficient numerical simulations the QCPMG type experiments have been analyzed regarding the effect of the magnitude of the EFG- and CSA-tensors, the spin-quantum number, different dynamical processes and MAS. Compared to the QE experiment the QCPMG experiment offers not only intensity gain by an order of magnitude and changes in overall lineshape as a function of the kinetic rate constant but the lineshape of the individual spin-echo sidebands is also very sensitive towards dynamics. Hereby a visual identification of the dynamics is obtained. In common for all the simulations the spin-echo sidebands are narrow in the slow (k< or =10(2) Hz) and the fast (k> or =10(7) Hz) dynamic regime whereas they are broadened in the intermediate regime 10(3)< or =k< or =10(7) Hz. The maximum intensity of the spin-echo sidebands for two-site jumps is highly dependent on the type of anisotropic interactions involved and the type of QCPMG experiment. Hence, in the fast limit the maximum intensity was 140% of the initial intensity when significant CSA was present or under the QCPMG-MAS experiment compared to 89 or 71% for the static experiment influenced by the quadrupolar interaction only. For 3-, 4-, and 6-site jumps the maximum intensity in the fast limit reached up to 339% of the intensity in the static limit.