Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(515), p. 3370-3382, 2022

DOI: 10.1093/mnras/stac1768

Links

Tools

Export citation

Search in Google Scholar

A Roche lobe-filling hot subdwarf and white dwarf binary: possible detection of an ejected common envelope

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Binaries consisting of a hot subdwarf star and an accreting white dwarf (WD) are sources of gravitational wave radiation at low frequencies and possible progenitors of Type Ia supernovae if the WD mass is large enough. Here, we report the discovery of the third binary known of this kind: It consists of a hot subdwarf O (sdO) star and a WD with an orbital period of 3.495 h and an orbital shrinkage of 0.1 s in 6 yr. The sdO star overfills its Roche lobe and likely transfers mass to the WD via an accretion disc. From spectroscopy, we obtain an effective temperature of $T_{\mathrm{eff}}=54\, 240± 1840$ K and a surface gravity of log g = 4.841 ± 0.108 for the sdO star. From the light curve analysis, we obtain an sdO mass of MsdO = 0.55 M⊙ and a mass ratio of q = MWD/MsdO = 0.738 ± 0.001. Also, we estimate that the disc has a radius of $∼\!0.41\ \mathrm{R}_⊙$ and a thickness of $∼\!0.18\ \mathrm{R}_⊙$. The origin of this binary is probably a common envelope ejection channel, where the progenitor of the sdO star is either a red giant branch star or, more likely, an early asymptotic giant branch star; the sdO star will subsequently evolve into a WD and merge with its WD companion, likely resulting in an R Coronae Borealis (R CrB) star. The outstanding feature in the spectrum of this object is strong Ca H&K lines, which are blueshifted by ∼200 km s−1 and likely originate from the recently ejected common envelope, and we estimated that the remnant common envelope (CE) material in the binary system has a density $∼\!6\times 10^{-10}\ {\rm g\, cm}^{-3}$.