Published in

Canadian Science Publishing, Environmental Reviews, 3(30), p. 380-401, 2022

DOI: 10.1139/er-2021-0110

Links

Tools

Export citation

Search in Google Scholar

Patterns of vegetation change in Yukon: recent findings and future research in dynamic subarctic ecosystems

Journal article published in 2022 by Kirsten A. Reid ORCID, Donald G. Reid, Carissa D. Brown
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In Yukon, Canada, average air temperature has increased by 2 °C over the past 50 years and, by the end of the century up to 6.9 °C of further warming is predicted, along with increased climate variability. As a result of these and other changes, vegetation communities are predicted to shift in space and composition. Changes to the vegetation assemblages across multiple ecological units or bioclimate zones will impact carbon and nutrient cycling, animal habitat, biodiversity levels, and other ecosystem processes. Yukon has a wide variety of vegetation communities, and paleoecological evidence indicates that significant vegetation changes have occurred throughout the territory in the past. No documented synthesis of changes to vegetation assemblages exists, restricting predictions of their future likelihood, abundance, and influence. Here, we review the literature of documented examples of vegetation change throughout Yukon that have occurred ( i) in different vegetation communities due to the persistent press of climate change and ( ii) after natural disturbances. Future research into all vegetation responses under ongoing climate change is warranted. We identify critical research gaps for each vegetation community and disturbance type that should be addressed to produce a more encompassing understanding of the response of Yukon bioclimate zones and vegetation communities to future warming and disturbances.