Combination of curcumin and piperine prevents formation of gallstones in C57BL6 mice fed on lithogenic diet: whether NPC1L1/SREBP2 participates in this process?

Journal article by Yongnan Li, Min Li, Shuodong Wu, Yu Tian

Full text: Download

Publisher: BioMed Central

Preprint: archiving allowed. Upload

Postprint: archiving allowed. Upload

Published version: archiving allowed. Upload

Policy details (opens in a new window). Data provided by SHERPA/RoMEO
Abstract
Abstract Background A disruption of cholesterol homeostasis characterized by the physical-chemical imbalance of cholesterol solubility in bile often results in formation of cholesterol gallstones. Our earlier studies revealed that curcumin (1000 mg/kg) could prevent formation of gallstones. It has been proved that curcumin is poorly absorbed while piperine is a bioavailability-enhancer. Nevertheless, whether curcumin combined with piperine could enhance the effect of curcumin in preventing gallstones is still awaited. Method C57BL6 mice were fed on a lithogenic diet concomitant with curcumin at 500 or 1000 mg/kg and/or piperine at 20 mg/kg for 4 weeks. The ratio of gallbladder stone formation was recorded and samples of blood, bile, gallbladder, liver and small intestine were also collected. The volume of gallbladder and weight of liver were calculated, and blood and bile samples were analyzed through biochemical methods. Intestinal NPC1L1 and SREBP2 mRNA and protein expression were detected by real-time PCR and Western blot. Result Combining with piperine can significantly enhance the effect of curcumin, thus preventing the development of gallbladder stones, lowering the saturation of blood lipids and cholesterol in bile, as well as decreasing the expression of NPC1L1 and SREBP2 in both mRNA and protein levels. Conclusion Curcumin can prevent the formation of cholesterol gallstones induced by high fat diet in mice and SREBP2 and NPC1L1 may participate in this process. Piperine can increase curcumin’s bioavailability, thereby enhancing the effect of curcumin.