Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 8(121), p. 081105, 2022

DOI: 10.1063/5.0094982

Links

Tools

Export citation

Search in Google Scholar

Fabrication of high-quality PMMA/SiO<sub>x</sub> spaced planar microcavities for strong coupling of light with monolayer WS<sub>2</sub> excitons

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Exciton polaritons in atomically thin transition metal dichalcogenide crystals (monolayer TMDCs) have emerged as a promising candidate to enable topological transport, ultra-efficient laser technologies, and collective quantum phenomena such as polariton condensation and superfluidity at room temperature. However, integrating monolayer TMDCs into high-quality planar microcavities to achieve the required strong coupling between the cavity photons and the TMDC excitons (bound electron–hole pairs) has proven challenging. Previous approaches to integration had to compromise between various adverse effects on the strength of light–matter interactions in the monolayer, the cavity photon lifetime, and the lateral size of the microcavity. Here, we demonstrate a scalable approach to fabricate high-quality planar microcavities with an integrated monolayer WS2 layer-by-layer by using polymethyl methacrylate/silicon oxide (PMMA/SiO x) as a cavity spacer. Because the exciton oscillator strength is well protected against the required processing steps by the PMMA layer, the microcavities investigated in this work, which have quality factors of above 103, can operate in the strong light–matter coupling regime at room temperature. This is an important step toward fabricating wafer-scale and patterned microcavities for engineering the exciton-polariton potential landscape, which is essential for enabling many proposed technologies.