Published in

Optica, Optics Express, 20(30), p. 36592, 2022

DOI: 10.1364/oe.472479

Links

Tools

Export citation

Search in Google Scholar

Quantifying ocean surface green tides using high-spatial resolution thermal images

Journal article published in 2022 by Qingjun Song ORCID, Chaofei Ma, Jianqiang Liu, Hongyang Wei
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The use of thermal remote sensing for marine green tide monitoring has not been clearly demonstrated due to the lack of high-resolution spaceborne thermal observation data. This problem has been effectively solved using high-spatial resolution thermal and optical images collected from the sensors onboard the Ziyuan-1 02E (ZY01-02E) satellite of China. The characteristics and principles of spaceborne thermal remote sensing of green tides were investigated in this study. Spaceborne thermal cameras can capture marine green tides depending on the brightness temperature difference (BTD) between green tides and background seawater, which shows a positive or negative BTD contrast between them in the daytime or nighttime. There is a significant difference between thermal and optical remote sensing in the ability to detect green tides; compared with optical remote sensing, pixels containing less algae are not easily distinguishable in thermal images. However, there is a good linear statistical relationship between the BTD and the optical parameter (scaled algae index of virtual baseline height of floating macroalgae, SAI(VB)) of green tides, which indicates that the BTD can be used to quantify the green tide coverage area in a pixel or biomass per area. Then, the uncertainty in thermal quantitative remote sensing of green tides was clarified according to the pixel-to-pixel relationship between optical and thermal images. In a mixed pixel, green tide coverage and algal thickness have different thermal signal responses, which results in this uncertainty. In future research, more thermally remotely sensed images with high spatial resolution are needed to increase the observation frequency in the daytime and nighttime for the dynamic monitoring of green tides.