Published in

American Chemical Society, Chemistry of Materials, 13(19), p. 3265-3270, 2007

DOI: 10.1021/cm070552h

Links

Tools

Export citation

Search in Google Scholar

Luminescence of molecular and block copolymeric 2,7-bis(phenylethenyl)-fluorenones; Identifying green-band emitter sites in a fluorene-based luminophore

Journal article published in 2007 by Hp Rathnayake, Ali Cirpan, Fe Karasz, My Odoi, Ni Hammer ORCID, Michael D. Barnes, Pm Lahti
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

2,7-Bis(3,4,5-trimethoxyphenylethenyl)fluorenone (OFOPV) and a segmented oligomer analogue linking OFOPV units with polymethylene flexible spacersalt-poly(2,6-dimethoxylphenylene-4-vinylene-[9-fluorenone-2-yl-7-vinylene]3,5-dimethoxyphenylene-4-[1,6-hexanedioxyl]) (pFOPV)were synthesized and their luminescence properties studied. Solution-phase photoluminescence (PL) of OFOPV and pFOPV shows concentration-dependent relative intensities of a fine-structured higher energy band and a featureless lower energy band, consistent with solution excimer formation. Neat film PL and electroluminescence (EL) spectra using 100% OFOPV and pFOPV emitter layers show red emission bands (λmax 610 nm). Solid film PL spectra of OFOPV diluted in PMMA or Zeonex are significantly blue-shifted relative to the neat film spectra. PL and EL spectra of 2,7-bis(3,4,5-trimethoxyphenylethenyl)-9,9-diethylfluorene (OFPV) blended with <1% by weight of OFOPV gives significant green region (g-band) emission in addition to the normal blue emission of OFPV. Monomeric OFOPV produced by adventitious oxidation is therefore identified as giving g-band emission in thermally stressed OFPV-based OLEDs, due to intermolecular energy transfer from OFPV excitons to lower energy OFOPV. The red emission in neat solid-phase OFOPV and pFOPV appear to arise from fluorenone-type excimers that do not play a direct role in g-band emission in this case.