Dissemin is shutting down on January 1st, 2025

Published in

Association for Computing Machinery (ACM), ACM Transactions on Reconfigurable Technology and Systems, 2022

DOI: 10.1145/3567429

Links

Tools

Export citation

Search in Google Scholar

Fixed-Point FPGA Implementation of the FFT Accumulation Method for Real-time Cyclostationary Analysis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The spectral correlation density (SCD) is an important tool in cyclostationary signal detection and classification. Even using efficient techniques based on the fast Fourier transform (FFT), real-time implementations are challenging because of the high computational complexity. A key dimension for computational optimization lies in minimizing the wordlength employed. In this paper, we analyze the relationship between wordlength and signal-to-quantization noise in fixed-point implementations of the SCD function. A canonical SCD estimation algorithm, the FFT accumulation method (FAM) using fixed-point arithmetic is studied. We derive closed-form expressions for SQNR and compare them at wordlengths ranging from 14 to 26 bits. The differences between the calculated SQNR and bit-exact simulations are less than 1 dB. Furthermore, an HLS-based FPGA design is implemented on a Xilinx Zynq UltraScale+ XCZU28DR-2FFVG1517E RFSoC. Using less than 25% of the logic fabric on the device, it consumes 7.7 W total on-chip power and has a power efficiency of 12.4 GOPS/W, which is an order of magnitude improvement over an Nvidia Tesla K40 graphics processing unit (GPU) implementation. In terms of throughput, it achieves 50 MS/sec, which is a speedup of 1.6 over a recent optimized FPGA implementation.