Published in

Elsevier, Current Opinion in Immunology, 5(21), p. 493-498, 2009

DOI: 10.1016/j.coi.2009.05.024

Links

Tools

Export citation

Search in Google Scholar

Human innate immunity against African trypanosomes.

Journal article published in 2009 by Etienne Pays, Benoît Vanhollebeke ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Humans are naturally resistant to infection by the African trypanosome prototype Trypanosoma brucei brucei, and only two variant clones of this parasite can avoid this innate immunity and cause sleeping sickness. The resistance to T. brucei is due to serum complexes associating apolipoprotein A-1 (apoA1) with two primate-specific proteins, apolipoprotein L-1 (apoL1) and haptoglobin-related protein (Hpr). We discuss recent advances on the respective functions of apoL1 and Hpr in this system. ApoL1 was found to share structural and functional similarities with proteins of the apoptotic Bcl2 family, and to kill trypanosomes through anionic pore formation in the lysosomal membrane of the parasite. In association with hemoglobin (Hb), Hpr was found to promote the binding of the trypanolytic complexes to a haptoglobin (Hp)-Hb receptor of the trypanosome surface, hereby facilitating the internalization of apoL1. Hpr or apoL1 deficiency respectively leads to the reduction or abolishment of human protection against T. brucei. ; Journal Article ; Research Support, Non-U.S. Gov't ; Review ; info:eu-repo/semantics/published