Dissemin is shutting down on January 1st, 2025

Published in

arXiv, 2022

DOI: 10.48550/arxiv.2209.14806

American Institute of Physics, Applied Physics Letters, 21(121), p. 213504, 2022

DOI: 10.1063/5.0128723

Links

Tools

Export citation

Search in Google Scholar

BULLKID: Monolithic array of particle absorbers sensed by kinetic inductance detectors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We introduce BULLKID, a phonon detector consisting of an array of dices acting as particle absorbers sensed by multiplexed Kinetic Inductance Detectors (KIDs). The dices are carved in a thick crystalline wafer and form a monolithic structure. The carvings leave a thin common disk intact in the wafer, acting both as holder for the dices and as substrate for the KID lithography. The prototype presented consists of an array of 64 dices of 5.4 × 5.4 × 5 mm3 carved in a 3˝ diameter, 5 mm thick silicon wafer, with a common disk of 0.5 mm thick, hosting a 60 nm patterned aluminum layer. The resulting array is highly segmented but avoids the use of dedicated holding structures for each unit. Despite the fact that the uniformity of the KID electrical response across the array needs optimization, the operation of eight units with similar features shows, on average, a baseline energy resolution of 26 ± 7 eV. This makes it a suitable detector for low-energy processes such as direct interactions of dark matter and coherent elastic neutrino-nucleus scattering.