American Institute of Physics, The Journal of Chemical Physics, 4(158), p. 044101, 2023
DOI: 10.1063/5.0133741
Full text: Download
The fully correlated frequency-independent Dirac–Coulomb–Breit Hamiltonian provides the most accurate description of electron–electron interaction before going to a genuine relativistic quantum electrodynamics theory of many-electron systems. In this work, we introduce a correlated Dirac–Coulomb–Breit multiconfigurational self-consistent-field method within the frameworks of complete active space and density matrix renormalization group. In this approach, the Dirac–Coulomb–Breit Hamiltonian is included variationally in both the mean-field and correlated electron treatment. We also analyze the importance of the Breit operator in electron correlation and the rotation between the positive- and negative-orbital space in the no-virtual-pair approximation. Atomic fine-structure splittings and lanthanide contraction in diatomic fluorides are used as benchmark studies to understand the contribution from the Breit correlation.