Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Express, 8(30), p. 12228, 2022

DOI: 10.1364/oe.450707

Links

Tools

Export citation

Search in Google Scholar

Narrow-bandwidth Bragg grating filter based on Ge-Sb-Se chalcogenide glasses

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Bragg grating (BG) filters play important roles in integrated photonics such as signal processing and optical sensing. In silicon-based counterpart photonic platforms, the application of narrow-bandwidth (Δλ) filters is often restrained by fabrication limitations. In this study, narrow-bandwidth BG filters based on Ge-Sb-Se chalcogenide materials are investigated. The structure of the filter is designed by optimizing the grating period, corrugation height, and grating number. The large corrugation of chalcogenide BG is more friendly and convenient for manufacturing process. The symmetric and asymmetric corrugation filters are then fabricated and characterized. Experimental results show a half-maximum bandwidth of 0.97 nm and 0.32 nm for symmetric and asymmetric filters, respectively, which demonstrates excellent narrow-bandwidth filtering performance of chalcogenide BG.