Published in

MDPI, Plants, 4(12), p. 751, 2023

DOI: 10.3390/plants12040751

Links

Tools

Export citation

Search in Google Scholar

Invasiveness, Monitoring and Control of Hakea sericea: A Systematic Review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Solutions for ecological and economic problems posed by Hakea sericea invasions rely on scientific knowledge. We conducted a systematic review to analyze and synthesize the past and current scientific knowledge concerning H. sericea invasion processes and mechanisms, as well as monitoring and control techniques. We used ISI Web of Science, Scopus, and CAPES Periodicals to look for publications on the ecological and environmental factors involved in H. sericea establishment (question 1); responses of H. sericea to fire in native and invaded ecosystems (question 2); and H. sericea monitoring and control methods (question 3). We identified 207 publications, 47.4% of which related to question 1, mainly from Australia and South Africa, with an increasing trend in the number of publications on monitoring and modeling. The traits identified in our systematic review, such as adaptations to dystrophic environments, drought resistance, sclerophylly, low transpiration rates, high nutrient use efficiency, stomatal conductance and photosynthetic rates, strong serotiny, proteoid roots and high post-fire seed survival and seedling recruitment, highlighted that H. sericea is a successful invader species due to its long adaptive history mediated by an arsenal of ecophysiological mechanisms that place it at a superior competitive level, especially in fire-prone ecosystems. Integrated cost-effective control methods in selected areas and the incorporation of information on the temporal invasion dynamics can significantly improve invasion control and mitigate H. sericea impacts while maintaining the supply of ecosystem services in invaded areas.