Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Electronics, 4(12), p. 934, 2023

DOI: 10.3390/electronics12040934

Links

Tools

Export citation

Search in Google Scholar

Human–Computer Interaction and Participation in Software Crowdsourcing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Improvements in communication and networking technologies have transformed people’s lives and organizations’ activities. Web 2.0 innovation has provided a variety of hybridized applications and tools that have changed enterprises’ functional and communication processes. People use numerous platforms to broaden their social contacts, select items, execute duties, and learn new things. Context: Crowdsourcing is an internet-enabled problem-solving strategy that utilizes human–computer interaction to leverage the expertise of people to achieve business goals. In crowdsourcing approaches, three main entities work in collaboration to solve various problems. These entities are requestors (job providers), platforms, and online users. Tasks are announced by requestors on crowdsourcing platforms, and online users, after passing initial screening, are allowed to work on these tasks. Crowds participate to achieve various rewards. Motivation: Crowdsourcing is gaining importance as an alternate outsourcing approach in the software engineering industry. Crowdsourcing application development involves complicated tasks that vary considerably from the micro-tasks available on platforms such as Amazon Mechanical Turk. To obtain the tangible opportunities of crowdsourcing in the realm of software development, corporations should first grasp how this technique works, what problems occur, and what factors might influence community involvement and co-creation. Online communities have become more popular recently with the rise in crowdsourcing platforms. These communities concentrate on specific problems and help people with solving and managing these problems. Objectives: We set three main goals to research crowd interaction: (1) find the appropriate characteristics of social crowd utilized for effective software crowdsourcing, (2) highlight the motivation of a crowd for virtual tasks, and (3) evaluate primary participation reasons by assessing various crowds using Fuzzy AHP and TOPSIS method. Conclusion: We developed a decision support system to examine the appropriate reasons of crowd participation in crowdsourcing. Rewards and employments were evaluated as the primary motives of crowds for accomplishing tasks on crowdsourcing platforms, knowledge sharing was evaluated as the third reason, ranking was the fourth, competency was the fifth, socialization was sixth, and source of inspiration was the seventh.