Published in

Elsevier, Journal of Catalysis, (325), p. 35-47

DOI: 10.1016/j.jcat.2015.02.012

Links

Tools

Export citation

Search in Google Scholar

Revisiting carbenium chemistry on amorphous silica-alumina: Unraveling their milder acidity as compared to zeolites

Journal article published in 2015 by Fabien Leydier, Céline Chizallet, Dominique Costa, Pascal Raybaud
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Amorphous silica-aluminas (ASA) are prominent solids for their acidic properties. They are of first interest in catalysis, in particular for cracking reactions. Their relative acidity as compared to zeolites is a long-lasting general issue, driven by the limited knowledge of the surface structure of ASA, due to their amorphous nature. In the present contribution, thanks to a first principles approach based on our original ASA surface model, and on the study of a model mordenite zeolite (MOR), we propose a rational explanation for this feature. We compare by density functional theory calculations the ability of ASA and MOR to generate carbenium species from isobutene, versus π-complexes and alkoxide species. On ASA, carbenium species can be formed on pseudo-bridging silanols (PBS) only and are much less stable than in MOR. Then, we investigate the cracking pathway of a model alkene, 2,4,4-trimethyl-2-pentene (DIB), by quantifying the stability of relevant intermediates of carbocationic and alkoxide natures. The carbocationic pathway is favored in MOR, whereas on ASA, this pathway is strongly activated. By contrast, the PBS on ASA initiate preferentially a tertiary alkoxide route, or possibly a combined carbocationic/alkoxy route. Finally, the i-butene desorption step is also limiting in MOR due to the confinement effect induced by the zeolite pores. As a result, the higher cracking reactivity of zeolites as compared to ASA is mainly attributed to the favored nature of the carbenium route, stabilized by higher electrostatic confinement effect.