Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Atmosphere, 4(14), p. 622, 2023

DOI: 10.3390/atmos14040622

Links

Tools

Export citation

Search in Google Scholar

Wavenumber-Frequency Spectra of Normal Mode Function Decomposed Atmospheric Data: Departures from the Dry Linear Theory

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The study of tropical tropospheric disturbances has led to important challenges from both observational and theoretical points of view. In particular, the observed wavenumber-frequency spectrum of tropical oscillations has helped bridge the gap between observations and the linear theory of equatorial waves. In this study, we obtained a similar wavenumber-frequency spectrum for each equatorial wave type by performing a normal mode function (NMF) decomposition of global Era–Interim reanalysis data. The NMF basis used here is provided by the eigensolutions of the primitive equations in spherical coordinates as linearized around a resting background state. In this methodology, the global multi-level horizontal velocity and geopotential height fields are projected onto the normal mode functions, characterized by a vertical mode, a zonal wavenumber, a meridional quantum index, and a mode type, namely, Rossby, Kelvin, mixed Rossby-gravity, and westward/eastward propagating inertio-gravity modes. The horizontal velocity and geopotential height fields associated with each mode type are then reconstructed in the physical space, as well as their corresponding filtered versions defined according to the vertical mode classes that exhibit barotropic and baroclinic structures within the troposphere. The results reveal expected structures, such as the dominant global-scale Rossby and Kelvin waves constituting the intraseasonal frequency associated with the Madden–Julian Oscillation. On the other hand, a number of unexpected features, such as eastward propagating westward inertio-gravity waves, are revealed by our observed 200 hPa zonal wind spectrum. Among all possible nonlinear processes, we focus on the analysis of the interaction between Kelvin and westward inertio-gravity waves, providing evidence for their coupling. Apart from the nonlinearity, we discuss the potential roles of a vertically/meridionally varying background state as well as the coupling with moist convection in explaining the departures of the observed spectra from the corresponding linear equatorial wave theory.