Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Geophysical Research Letters, 19(48), 2021

DOI: 10.1029/2021gl095487

Links

Tools

Export citation

Search in Google Scholar

Enhanced Visibility of Subduction Slabs by the Formation of Dense Hydrous Phase A

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractPhase A (Mg7Si2O8(OH)6) is one of the important dense hydrous magnesium silicates in subducting slab, because it forms after the breakdown of antigorite serpentine and could be the dominant hydrous phase in the upper‐mantle deep slab for the water transportation into deep Earth. In this study, the compressional (P) and shear (S) wave velocities of phase A were measured at simultaneous pressure and temperature conditions up to 11 GPa and 1073 K. Combined with elastic properties of olivine and pyroxenes, we calculate the hydration effect on the velocities of harzburgite lithology in cold subduction zones throughout the depth ranges where phase A is thermodynamically stable. Our calculations suggest that the hydration increases both P‐ and S‐wave velocities of harzburgite; at ∼5 wt% hydration, its seismic detectability is enhanced by 1%–1.5% in velocity contrasts relative to its anhydrous counterpart.