Dissemin is shutting down on January 1st, 2025

Published in

Optica, Journal of the Optical Society of America A, 5(38), p. 727, 2021

DOI: 10.1364/josaa.419420

Links

Tools

Export citation

Search in Google Scholar

Spatial coherence in 2D holography

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Holography is a long-established technique to encode an object’s spatial information into a lower-dimensional representation. We investigate the role of the illumination’s spatial coherence properties in the success of such an imaging system through point spread function and Fourier domain analysis. Incoherent illumination is shown to result in more robust imaging performance free of diffraction artifacts at the cost of incurring background noise and sacrificing phase retrieval. Numerical studies confirm that this background noise reduces image sensitivity as the image size increases, in agreement with other similar systems. Following this analysis, we demonstrate a 2D holographic imaging system realized with lensless, 1D measurements of microwave fields generated by dynamic metasurface apertures.