Published in

MDPI, Energies, 16(14), p. 5095, 2021

DOI: 10.3390/en14165095

Links

Tools

Export citation

Search in Google Scholar

Traffic Noise Modelling Using Land Use Regression Model Based on Machine Learning, Statistical Regression and GIS

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study estimates the equivalent continuous sound pressure level (Leq) during peak daily periods (‘rush hour’) along the New Klang Valley Expressway (NKVE) in Shah Alam, Malaysia, using a land use regression (LUR) model based on machine learning, statistical regression, and geographical information systems (GIS). The research utilises two types of soft computing methods including machine learning (i.e., decision tree, random frost algorithms) and statistical regression (i.e., linear regression, support vector regression algorithms) to determine the best approach to create a prediction Leq map at the NKVE in Shah Alam, Malaysia. The selection of the best algorithm is accomplished by considering correlation, correlation coefficient, mean-absolute-error, mean-square-error, root-mean-square-error, and mean absolute percentage error. Traffic noise level was monitored using three sound level meters (TES 52A), and a traffic tally was done to analyse the traffic flow. Wind speed was gauged using a wind speed meter. The study relied on a variety of noise predictors including wind speed, digital elevation model, land use type (specifically, if it was residential, industrial, or natural reserve), residential density, road type (expressway, primary, and secondary) and traffic noise average (Leq). The above parameters were fed as inputs into the LUR model. Additional noise influencing factors such as traffic lights, intersections, road toll gates, gas stations, and public transportation infrastructures (bus stop and bus line) are also considered in this study. The models utilised parameters derived from LiDAR (Light Detection and Ranging) data, and various GIS (Geographical Information Systems) layers were extracted to produce the prediction maps. The results highlighted the superior performances by the machine learning (random forest) models compared to the statistical regression-based models.