Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 2(957), p. 110, 2023

DOI: 10.3847/1538-4357/acf8bf

Links

Tools

Export citation

Search in Google Scholar

Multi-spacecraft Observations of the 2022 March 25 CME and EUV Wave: An Analysis of Their Propagation and Interrelation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract This paper reports on a well-defined EUV wave associated with a coronal mass ejection (CME) observed on 2022 March 25. The CME was observed by Solar Orbiter (SolO) during its first close perihelion (0.32 au) and by several other spacecraft from different viewpoints. The EUV wave was visible by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory (STEREO-A/STA) in near quadrature to SolO. We perform a detailed analysis of the early phase of this CME in relation to the evolution of the associated EUV wave. The kinematics of the EUV wave and CME are derived via visual identification of the fronts using both the STA and SolO data. The analysis of an associated metric type II radio burst provides information on the early phase of the CME and wave propagation. Finally, we compare the EUV speed to the local magnetic field and Alfvén speed using standard models of the corona. The analysis of the decoupling between the EUV wave and the CME driver via imaging, kinematic study, radio data analysis, and comparison with maps/models clearly indicates that the EUV front is consistent with a wave initially driven by the lateral expansion of the CME, which evolves into a fast-mode magnetosonic wave after decoupling from the CME.