Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Remote Sensing, 9(15), p. 2398, 2023

DOI: 10.3390/rs15092398

Links

Tools

Export citation

Search in Google Scholar

Paddy Rice Phenological Mapping throughout 30-Years Satellite Images in the Honghe Hani Rice Terraces

Journal article published in 2023 by Jianbo Yang ORCID, Jianchu Xu ORCID, Ying Zhou, Deli Zhai ORCID, Huafang Chen, Qian Li, Gaojuan Zhao
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Honghe Hani Rice Terraces represent the coexistence between natural and cultural systems. Despite being listed as a World Heritage Site in 2013, certain natural and anthropogenic factors have changed land use/land cover, which has led to a reduction in the size of the paddy rice area. It is difficult to accurately assess these changes due to the lack of historical maps of paddy rice croplands with fine spatial resolution. Therefore, we integrated a random forest classifier and phenological information to improve mapping accuracy and stability. We then mapped the historical distribution of land use/land cover in the Honghe Hani Rice Terraces from 1989–1991 to 2019–2021 using the Google Earth Engine. Finally, we analyzed the driving forces of land use types in the Honghe Hani Rice Terraces. We found that: (1) forests, shrubs or grasslands, and other croplands could be discriminated from paddy rice during the flooding and transplanting period, and water bodies and buildings could also be discriminated from paddy rice during the growing and harvesting period. (2) Inputting phenological feature data improved mapping accuracy and stability compared with single phenological periods. (3) In the past thirty years, 10.651%, 8.810%, and 5.711% of paddy rice were respectively converted to forests, shrubs or grasslands, and other croplands in the Honghe Hani Rice Terraces. (4) Lower agricultural profits and drought led to problems in identifying the driving mechanisms behind paddy rice distribution changes. This study demonstrates that phenological information can improve the mapping accuracy of rice terraces. It also provides evidence for the change in the size of the rice terrace area and associated driving forces in Southwest China.