Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Cancers, 8(13), p. 1808, 2021

DOI: 10.3390/cancers13081808

Links

Tools

Export citation

Search in Google Scholar

Natural Trienoic Acids as Anticancer Agents: First Stereoselective Synthesis, Cell Cycle Analysis, Induction of Apoptosis, Cell Signaling and Mitochondrial Targeting Studies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The first Z-stereoselective method was developed for the synthesis of unsaturated acids containing a 1Z,5Z,9Z-triene moiety in 61–64% yields using the new Ti-catalyzed cross-coupling of oxygen-containing and aliphatic 1,2-dienes as the key synthetic step. It was shown for the first time that trienoic acids with non-methylene-interrupted Z-double bonds show moderate cytotoxic activities against tumor cell lines (Jurkat, K562, U937, HL60, HeLa), human embryonic kidney cells (Hek293), normal fibroblasts and human topoisomerase I (hTop1) inhibitory activity in vitro. The synthesized acids efficiently initiate apoptosis of Jurkat tumor cells, with the cell death mechanism being activated by the mitochondrial pathway. A probable mechanism of topoisomerase I inhibition was also hypothesized on the basis of in silico studies resorting to docking. The activation and inhibition of the most versatile intracellular signaling pathways (CREB, JNK, NFkB, p38, ERK1/2, Akt, p70S6K, STAT3 and STAT5 tyrosine kinases) responsible for cell proliferation and for initiation of apoptosis were studied by multiplex assay technology (Luminex xMAP).