Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 22(22), p. 14825-14836, 2022

DOI: 10.5194/acp-22-14825-2022

Links

Tools

Export citation

Search in Google Scholar

Constraining the particle-scale diversity of black carbon light absorption using a unified framework

Journal article published in 2022 by Payton Beeler ORCID, Rajan K. Chakrabarty ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Atmospheric black carbon (BC), the strongest absorber of visible solar radiation in the atmosphere, manifests across a wide spectrum of morphologies and compositional heterogeneity. Phenomenologically, the distribution of BC among diverse particles of varied composition gives rise to enhancement of its light absorption capabilities by over twofold in comparison to that of nascent or unmixed homogeneous BC. This situation has challenged the modeling community to consider the full complexity and diversity of BC on a per-particle basis for accurate estimation of its light absorption. The conventionally adopted core–shell approximation, although computationally inexpensive, is inadequate not only in estimating but also capturing absorption trends for ambient BC. Here we develop a unified framework that encompasses the complex diversity in BC morphology and composition using a single metric, the phase shift parameter (ρBC), which quantifies how much phase shift the incoming light waves encounter across a particle compared to that in its absence. We systematically investigate variations in ρBC across the multi-space distribution of BC morphology, mixing state, mass, and composition as reported by field and laboratory observations. We find that ρBC>1 leads to decreased absorption by BC, which explains the weaker absorption enhancements observed in certain regional BC compared to laboratory results of similar mixing state. We formulate universal scaling laws centered on ρBC and provide physics-based insights regarding core–shell approximation overestimating BC light absorption. We conclude by packaging our framework in an open-source Python application to facilitate community-level use in future BC-related research. The package has two main functionalities. The first functionality is for forward problems, wherein experimentally measured BC mixing state and assumed BC morphology are input, and the aerosol absorption properties are output. The second functionality is for inverse problems, wherein experimentally measured BC mixing state and absorption are input, and the morphology of BC is returned. Further, if absorption is measured at multiple wavelengths, the package facilitates the estimation of the imaginary refractive index of coating materials by combining the forward and inverse procedures. Our framework thus provides a computationally inexpensive source for calculation of absorption by BC and can be used to constrain light absorption throughout the atmospheric lifetime of BC.