Published in

Springer, Analytical and Bioanalytical Chemistry, 2024

DOI: 10.1007/s00216-024-05132-z

Links

Tools

Export citation

Search in Google Scholar

Arsenobetaine amide: a novel arsenic species detected in several mushroom species

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe total arsenic mass fraction as well as the arsenic speciation were studied in four different mushroom species with inductively coupled plasma mass spectrometry and high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry, respectively. Arsenic mass fractions detected in the mushrooms were covering a range from 0.3 to 22 mg As kg−1 dry mass. For the arsenic speciation, species like arsenobetaine, inorganic arsenic, or dimethylarsinic acid were found, which are commonly detected in mushrooms, but it was also proven that the recently discovered novel compound homoarsenocholine is present in Amanita muscaria and Ramaria sanguinea. Moreover, a previously unidentified arsenic species was isolated from Ramaria sanguinea and identified as trimethylarsonioacetamide, or in short: arsenobetaine amide. This new arsenical was synthesized and verified by spiking experiments to be present in all investigated mushroom samples. Arsenobetaine amide could be an important intermediate to further elucidate the biotransformation pathways of arsenic in the environment. Graphical Abstract