Dissemin is shutting down on January 1st, 2025

Published in

American Heart Association, Stroke, 3(54), 2023

DOI: 10.1161/strokeaha.122.040908

Links

Tools

Export citation

Search in Google Scholar

Acute Microbleeds and Microinfarcts Within the Perihematomal Area After Intracerebral Hemorrhage

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: To further our understanding of the pathophysiology of spontaneous intracerebral hemorrhage (ICH) and related injury, we provided a postmortem neuropathological examination of acute microvascular lesions (microbleeds and microinfarcts) within the perihematomal area. Methods: We included all consecutive cases (2005–2019) from the Lille University Hospital brain bank of ICH patients who died within the first month. Paraffin-embedded tissue sections from the perihematomal area were processed for several stainings and immunolabelings to investigate the presence of acute microbleeds and microinfarcts in the perihematomal area and to characterize surrounding neuronal and systemic inflammatory reaction (macrophages and neutrophils). Results: We included 14 ICH cases (median age, 78 years; 10 females). Acute microbleeds were observed in the perihematomal area in 12/14 patients (86%, ranging from 1 through >10) and microinfarcts in 5/14 (36%, ranging from 1 through 4). Microbleeds were observed whatever the delay from ICH onset to death was, while most cases with acute microinfarcts were observed between day 3 and day 7 (n=3/5). Both lesions were characterized by an abundant accumulation of systemic inflammatory cells and necrotic areas. Conclusions: Acute microbleeds and microinfarcts might contribute to the propagation of secondary brain tissue damages after ICH. Our examinations also question the potential role of massive systemic inflammatory cells recruitment in the genesis of these microvascular injuries.