Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Journal of Functional Morphology and Kinesiology, 4(8), p. 146, 2023

DOI: 10.3390/jfmk8040146

Links

Tools

Export citation

Search in Google Scholar

Effects of Electrical Stimulation on Delayed Onset Muscle Soreness (DOMS): Evidences from Laboratory and In-Field Studies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Intense, long exercise can increase oxidative stress, leading to higher levels of inflammatory mediators and muscle damage. At the same time, fatigue has been suggested as one of the factors giving rise to delayed-onset muscle soreness (DOMS). The aim of this study was to investigate the efficacy of a specific electrical stimulation (ES) treatment (without elicited muscular contraction) on two different scenarios: in the laboratory on eleven healthy volunteers (56.45 ± 4.87 years) after upper limbs eccentric exercise (Study 1) and in the field on fourteen ultra-endurance athletes (age 47.4 ± 10.2 year) after an ultra-running race (134 km, altitude difference of 10,970 m+) by lower exercising limbs (Study 2). Subjects were randomly assigned to two experimental tasks in cross-over: Active or Sham ES treatments. The ES efficacy was assessed by monitoring the oxy-inflammation status: Reactive Oxygen Species production, total antioxidant capacity, IL-6 cytokine levels, and lactate with micro-invasive measurements (capillary blood, urine) and scales for fatigue and recovery assessments. No significant differences (p > 0.05) were found in the time course of recovery and/or pre–post-race between Sham and Active groups in both study conditions. A subjective positive role of sham stimulation (VAS scores for muscle pain assessment) was reported. In conclusion, the effectiveness of ES in treating DOMS and its effects on muscle recovery remain still unclear.