Published in

Wiley, Journal of Phycology: An International Journal of Algal Research, 6(59), p. 1147-1165, 2023

DOI: 10.1111/jpy.13392

Links

Tools

Export citation

Search in Google Scholar

Novel diversity within Roseofilum (Desertifilaceae, Cyanobacteria) from marine benthic mats with description of four new species

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBenthic cyanobacterial mats (BCMs) are natural phenomena in marine environments. Reports of BCMs occurring across coastal marine environments have increased, partly driven by nutrient loading and climate change; thus, there is a need to understand the diversity involved in the proliferations and potential toxicity of the BCMs. Furthermore, marine cyanobacterial mats are observed growing on and affecting the health of corals with one specific cyanobacterial genus, Roseofilum, dominating the microbial mats associated with black band disease (BBD), a destructive polymicrobial disease that affects corals. To explore the diversity of Roseofilum, cyanobacterial mats from various marine habitats were sampled, and individual isolates were identified based on morphology, 16S rRNA gene phylogenies, 16S–23S ITS rRNA region sequence dissimilarities, and phylogenomics. Four novel species of Roseofilum were isolated from benthic marine mats, three from the coasts of Florida, United States (R. capinflatum sp. nov., R. casamattae sp. nov., and R. acuticapitatum sp. nov.) and one from the coast of France (R. halophilum sp. nov.). Our analyses revealed that Roseofilum associated with coral BBD and those not associated with corals but rather from coastal benthic mats are systematically distinct based on both phylogenetic and phylogenomic analyses. Enzyme‐linked immunosorbent assay (ELISA) and LC–MS data indicated that microcystin production was found in one of the four species.