Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(504), p. 5244-5257, 2021

DOI: 10.1093/mnras/stab1236

Links

Tools

Export citation

Search in Google Scholar

The X-ray evolution and geometry of the 2018 outburst of XTE J1810−197

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT After 15 yr, in late 2018, the magnetar XTE J1810−197 underwent a second recorded X-ray outburst event and reactivated as a radio pulsar. We initiated an X-ray monitoring campaign to follow the timing and spectral evolution of the magnetar as its flux decays using Swift, XMM–Newton, NuSTAR, and NICER observations. During the year-long campaign, the magnetar reproduced similar behaviour to that found for the first outburst, with a factor of 2 change in its spin-down rate from ∼7.2 × 10−12 to ∼1.5 × 10−11 s s−1 after two months. Unique to this outburst, we confirm the peculiar energy-dependent phase shift of the pulse profile. Following the initial outburst, the spectrum of XTE J1810−197 is well modelled by multiple blackbody components corresponding to a pair of non-concentric, hot thermal caps surrounded by a cooler one, superposed to the colder star surface. We model the energy-dependent pulse profile to constrain the viewing and surface emission geometry and find that the overall geometry of XTE J1810−197 has likely evolved relative to that found for the 2003 event.