Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 2(922), p. 253, 2021

DOI: 10.3847/1538-4357/ac34f2

Links

Tools

Export citation

Search in Google Scholar

NICER Study of Pulsed Thermal X-Rays from Calvera: A Neutron Star Born in the Galactic Halo?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Calvera (1RXS J141256.0+792204) is an isolated neutron star detected only through its thermal X-ray emission. Its location at high Galactic latitude (b = +37°) is unusual if Calvera is a relatively young pulsar, as suggested by its spin period (59 ms) and period derivative (3.2 × 10−15 s s−1). Using the Neutron Star Interior Composition Explorer, we obtained a phase-connected timing solution spanning four years, which allowed us to measure the second derivative of the frequency ν ̈ = − 2.5 × 10 − 23 Hz s−2 and to reveal timing noise consistent with that of normal radio pulsars. A magnetized hydrogen atmosphere model, covering the entire star surface, provides a good description of the phase-resolved spectra and energy-dependent pulsed fraction. However, we found that a temperature map more anisotropic than that produced by a dipole field is required, with a hotter zone concentrated toward the poles. By adding two small polar caps, we found that the surface effective temperature and that of the caps are ∼0.1 and ∼0.36 keV, respectively. The inferred distance is ∼3.3 kpc. We confirmed the presence of an absorption line at 0.7 keV associated with the emission from the whole star surface, difficult to interpret as a cyclotron feature and more likely originating from atomic transitions. We searched for pulsed γ-ray emission by folding seven years of Fermi-LAT data using the X-ray ephemeris, but no evidence for pulsations was found. Our results favor the hypothesis that Calvera is a normal rotation-powered pulsar, with the only peculiarity of being born at a large height above the Galactic disk.