Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 2023

DOI: 10.1126/science.adi2336

Links

Tools

Export citation

Search in Google Scholar

Learning skillful medium-range global weather forecasting

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Global medium-range weather forecasting is critical to decision-making across many social and economic domains. Traditional numerical weather prediction uses increased compute resources to improve forecast accuracy, but does not directly use historical weather data to improve the underlying model. Here, we introduce “GraphCast,” a machine learning-based method trained directly from reanalysis data. It predicts hundreds of weather variables, over 10 days at 0.25° resolution globally, in under one minute. GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction, including tropical cyclones tracking, atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient weather forecasting, and helps realize the promise of machine learning for modeling complex dynamical systems.