Published in

MDPI, Microorganisms, 4(9), p. 810, 2021

DOI: 10.3390/microorganisms9040810

Links

Tools

Export citation

Search in Google Scholar

Stool Serology: Development of a Non-Invasive Immunological Method for the Detection of Enterovirus-Specific Antibodies in Congo Gorilla Faeces

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: The incidence of poliovirus has been significantly reduced by as much as 99.9% globally. Alongside this, however, vaccine-associated paralytic poliomyelitis has emerged. Previously, our team reported in the Lésio-Louna-Léfini Nature Reserve (Republic of Congo) the presence of a new Enterovirus C (Ibou002) in a male gorilla that was put away because of clinical symptoms of facial paralysis. This new virus, isolated was from the stool samples of this gorilla but also from the excrement of an eco-guardian, is very similar to Coxsackievirus (EV-C99) as well as poliovirus 1 and 2. We hypothesised that these symptoms might be due to poliovirus infection. To test our hypothesis, we developed and optimised a non-invasive immunoassay for the detection of Enterovirus-specific antibodies in gorilla faeces that could be useful for routine serosurveillance in such cases. Methods: In order to assess the potential role of poliovirus infection, we have developed and optimised a protocol, based on the lyophilisation and solubilisation of small volumes of stool extracts from 16 gorilla and 3 humans, to detect specific antibodies by western blot and ELISA. Results: First, total immunoglobulins were detected in the concentrated stool extracts. Specific antibodies were then detected in 4/16 gorilla samples and 2/3 human samples by western blot using both the polio vaccine antigen and the Ibou002 antigen and by ELISA using the polio vaccine antigen. Humoral responses were greater with the Ibou002 antigen. Conclusion: We therefore suggest that this recombinant virus could lead to a polio-like disease in the endangered western lowland gorilla. The development of a non-invasive approach to detect microorganism-specific immunoglobulins from faecal samples opens numerous prospects for application in zoonotic infectious diseases and could revolutionise the screening of animals for important emerging infections, such as Ebola fever, rabies and coronavirus infections.