Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(13), 2022

DOI: 10.1038/s41467-022-30553-8

Links

Tools

Export citation

Search in Google Scholar

The RNA-bound proteome of MRSA reveals post-transcriptional roles for helix-turn-helix DNA-binding and Rossmann-fold proteins

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractRNA-binding proteins play key roles in controlling gene expression in many organisms, but relatively few have been identified and characterised in detail in Gram-positive bacteria. Here, we globally analyse RNA-binding proteins in methicillin-resistantStaphylococcus aureus(MRSA) using two complementary biochemical approaches. We identify hundreds of putative RNA-binding proteins, many containing unconventional RNA-binding domains such as Rossmann-fold domains. Remarkably, more than half of the proteins containing helix-turn-helix (HTH) domains, which are frequently found in prokaryotic transcription factors, bind RNA in vivo. In particular, the CcpA transcription factor, a master regulator of carbon metabolism, uses its HTH domain to bind hundreds of RNAs near intrinsic transcription terminators in vivo. We propose that CcpA, besides acting as a transcription factor, post-transcriptionally regulates the stability of many RNAs.