Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(13), 2022

DOI: 10.1038/s41467-022-31531-w

Links

Tools

Export citation

Search in Google Scholar

Orthogonal interlayer coupling in an all-antiferromagnetic junction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIn conventional ferromagnet/spacer/ferromagnet sandwiches, noncollinear couplings are commonly absent because of the low coupling energy and strong magnetization. For antiferromagnets (AFM), the small net moment can embody a low coupling energy as a sizable coupling field, however, such AFM sandwich structures have been scarcely explored. Here we demonstrate orthogonal interlayer coupling at room temperature in an all-antiferromagnetic junction Fe2O3/Cr2O3/Fe2O3, where the Néel vectors in the top and bottom Fe2O3 layers are strongly orthogonally coupled and the coupling strength is significantly affected by the thickness of the antiferromagnetic Cr2O3 spacer. From the energy and symmetry analysis, the direct coupling via uniform magnetic ordering in Cr2O3 spacer in our junction is excluded. The coupling is proposed to be mediated by the non-uniform domain wall state in the spacer. The strong long-range coupling in an antiferromagnetic junction provides an unexplored approach for designing antiferromagnetic structures and makes it a promising building block for antiferromagnetic devices.