American Association for the Advancement of Science, Science Advances, 44(8), 2022
Full text: Download
Two-dimensional (2D) semiconductor heterostructures are key building blocks for many electronic and optoelectronic devices. Reconfiguring the band-edge states and modulating their interplay with charge carriers at the interface in a continuous manner have long been sought yet are challenging. Here, using organic semiconductor–incorporated 2D halide perovskites as the model system, we realize the manipulation of band-edge states and charge distribution via mechanical—rather than chemical or thermal—regulation. Compression induces band-alignment switching and charge redistribution due to the different pressure responses of organic and inorganic building blocks, giving controllable emission properties of 2D perovskites. We propose and demonstrate a “pressure gating” strategy that enables the control of multiple emission states within a single material. We also reveal that band-alignment transition at the organic-inorganic interface is intrinsically not well resolved at room temperature owing to the thermally activated transfer and shuffling of band-edge carriers. This work provides important fundamental insights into the energetics and carrier dynamics of hybrid semiconductor heterostructures.