Published in

MDPI, Nutrients, 20(14), p. 4280, 2022

DOI: 10.3390/nu14204280



Export citation

Search in Google Scholar

Risk Stratification Based on a Pattern of Immunometabolic Host Factors Is Superior to Body Mass Index—Based Prediction of COVID-19-Associated Respiratory Failure

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO


Overweight and obesity are associated with chronic low-grade inflammation and represent risk factors for various diseases, including COVID-19. However, most published studies on COVID-19 defined obesity by the body mass index (BMI), which does not encounter adipose tissue distribution, thus neglecting immunometabolic high-risk patterns. Therefore, we comprehensively analyzed baseline anthropometry (BMI, waist-to-height-ratio (WtHR), visceral (VAT), epicardial (EAT), subcutaneous (SAT) adipose tissue masses and liver fat, inflammation markers (CRP, ferritin, interleukin-6), and immunonutritional scores (CRP-to-albumin ratio (CAR), modified Glasgow prognostic score, neutrophile-to-lymphocyte ratio, prognostic nutritional index)) in 58 consecutive COVID-19 patients of the early pandemic phase with regard to the necessity of invasive mechanical ventilation (IMV). Here, metabolically high-risk adipose tissues represented by increased VAT, liver fat, and WtHR strongly correlated with higher levels of inflammation, pathologic immunonutritional scores, and the need for IMV. In contrast, the prognostic value of BMI was inferior and absent with regard to SAT. Multivariable logistic regression analysis identified an optimized IMV risk prediction model employing liver fat, WtHR, and CAR. In summary, we suggest an immunometabolically risk-adjusted model to predict COVID-19-induced respiratory failure better than BMI-based stratification, which warrants prospective validation.