Published in

Springer, European Journal of Nutrition, 1(61), p. 1-21, 2021

DOI: 10.1007/s00394-021-02551-x

Links

Tools

Export citation

Search in Google Scholar

A1- and A2 beta-casein on health-related outcomes: a scoping review of animal studies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose Food-derived bioactive peptides may influence important physiological functions. An important example is beta-casomorphins, which are opioid peptides derived from A1 beta-casein in bovine milk and have been associated to be risk factors for non-communicable diseases in humans. A1 and A2 beta-casein are different with respect to the release of bioactive peptides, in particular BCM-7. However, evidence from human studies is limited and could be complemented with evidence derived from animal studies. We conducted a scoping review to identify animal studies investigating the effects of A1 beta-casein or BCM-7 compared to A2 beta-casein or any other intervention on health-related outcomes. Methods We systematically searched for relevant studies in two electronic databases (Medline, Embase; last search performed March 2020). Two reviewers independently undertook study selection and data extraction of included references. Results were summarized tabularly and narratively. Results We included 42 studies investigating various animal models, including rats, mice, rabbits, and dogs. Six studies investigated health-related outcomes of A1- vs. A2 milk, while most studies (n = 36) reported on physiological properties (e.g., analgesic effect) of BCM-7 as an opioid peptide. Included studies were extremely heterogeneous in terms of the study population, type of intervention and dose, and type of outcome measures. Conclusions Only a few studies comparing the effects of A1- and A2 milk were identified. More studies addressing this research question in animal models are needed to provide essential information to inform research gaps. Results from future studies could eventually complement research for humans, particularly when the body of evidence remains uncertain as is the case in the A1- and A2 milk debate.